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ABSTRACT

The philosophy, history, operation, calibration of and some analyses with

the ROAD (Rapid Orbit Analysis and Determination) program are described.

This semi-numeric trajectory program integrates and analyses mean element

variations for earth orbits with great efficiency. Through it's use, extensive

zonal, resonant harmonic and earth tidal determinations have been made at

Goddard Space Flight Center since 1969.
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THE ROAD PROGRAM

INTRODUCTION

At Goddard Space Flight Center, the most general computational system for

analyzing long term gravitational and non-gravitational effects on satellite orbits

has beenthe ROAD (Rapid Orbit Analysis and Determination) program. This

program is a multiple arc/satellite orbit generator which can also estimate

(from real data) a wide variety of the influential geodetic parameters. It uses

mean Kepler elements as the usual data type.

The ROAD orbit generator generally integrates numerically, orbit-averaged

Kepler element variations determined from a number of sources. The variations

due to the geopotential (to 40, 40), are determined from the right hand side of the

Lagrange planetary equations in its standard form. Only those geopotential dis-

turbances are usually integrated which have long term effects on the orbits,

permitting time steps of the order of a day or more and extremely fast epheme-

rides generation. Direct luni-solar gravity and the indirect luni-solar tidal ef-

fects on the orbits are evaluated from a similar disturbing potential which

selects only long period or orbit averaged terms for integration. Radiation

pressure variations are evaluated from a quasi-potential for full sunlight con-

ditions. When the orbit is partially in shadow, an orbit-averaged force is evalu-

ated by averaging the disturbance from shadow exit to shadow entrance.
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Precession and nutation effects of the movement of the earth's polar axis are

accounted for by integrating in a true of epoch inertial system. All forces are

initially calculated in true of date coordinates and then rotated to true of epoch

(using a precession-nutation rotation matrix). After integration, the true of

epoch elements are then rotated back to true of date for comparison with real

data which are usually given in these (latter) coordinates.

Drag is the only perturbation not evaluated by a potential or quasi-potential.

Therefore its element variations are not evaluated from the right hand side of

the standard planetary equations. Instead the gaussian form of the variation

equations are employed with the normal, circumferential and radial components

of the drag force evaluated from a one revolution J 2 perturbed trajectory through

a model atmosphere.

In its estimation mode, ROAD has the capability of solving for the following

arc dependent parameters: The six initial Kepler elements, an offset or bias in

the semi-major axis observations, up to 5 element rates and accelerations for

each of the initial Kepler elements, and a drag and radiation pressure coefficient

for each arc. In addition, it can solve for the following geodetic parameters,

common to all the satellite arcs observed: The earth's gaussian gravity constant

and earth radius, geopotential harmonics to (40, 40), and earth tidal harmonics

(love numbers) and their associated lag angles to 4th degree. ROAD determines

these parameters by a Baysian least squares process using the Kepler element

data as "observables." The partials of these observables with respect to the

parameters are generally found by numerical integration of variation equations.
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HISTORY

The orbit generator of ROAD, and the basic idea of integrating mean or

slowly varying Kepler elements, originated with the (resonant orbit) RESORB

program developed by B. C. Douglas and G. S. Gedeon at TRW, Inc. in 1966

[Gedeon, Douglas and Palmiter, 1967]1. The original purpose of this program

was to study the complex evolution of deeply resonant orbits for which no

analytic theory exists. Later RESORB, with only fixed geopotential and third

body forces, was extended to include drag and became (in 1967) the satellite

lifetime (Rapid Orbit Prediction) Program, ROPP [Wexler and Gedeon, 1967,

used extensively at Goddard Space Flight Center. Still later in 1968, ROPP

was modified at Goddard Space Flight Center to give it a limited estimation

capability (using secant partials) for state and geopotential recovery from long

arcs of mean Kepler elements. In addition, the effects of radiation pressure

were added, using Kaula's quasi-potential [Kaula, 1962], to account for signifi-

cant changes in highly eccentric resonant orbits.

The results of resonant geopotential determinations with this initial version

of the ROAD (Rapid Orbit Analysis and Determination) program were published in

Wagner, 1969, Wagner and Douglas, 1969 and Wagner, 1970b. In 1970, the long

term rates due to the interaction of short period terms in the earth's oblateness

were added to the ROAD integrator so that a proper analysis of the evolution of

close earth satellites could be made. Using this version of ROAD, preliminary

results for zonal recovery from 2 satellites were published in Wagner, Putney and
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Fisher, 1970. At the same time a new program was written using rigorous

numerical integration of variation equations for partials and a complete Baysian

(a priori) least squares scheme for parameter estimationlWilliamson, 1970,

Guion, Lynn and Lynn 1970 and Douglas, Dunn and Williamson, 1972]. Results

from this new ROAD program were published in 1970 and 1972 on the determina-

tion of both resonant and zonal geopotential terms from a large number of

satellite orbits [Wagner, 1970a, Wagner, 19721.

THE ROAD INTEGRATOR

An Adams multistep integration scheme is used to solve the first order

system of Lagrange's equations describing the satellite's motion:

d s.
d s = Si (s, p, t), si (t = 0) = s (0)Given i = 1, 2,... 6, ()
dt

where the s are the satellite orbit's 6 state variables; a, semi-major axis; e,

eccentricity; I, inclination; w, argument of perigee; N, right ascension of the

ascending node and M, the mean anomaly, and the p are geodetic parameters

describing the force model.

Geopotential Effects

The rates Si for geopotential effects are derived from the standard form

[Kaula, 1966] of (1):
da 2 R

dt na aM
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d e_ (1 -e 2 )  -aR (1-e')1/2  '3R . .

d t n a 2 e n-a 2 e-

d I cot I R csc'I R

d t n a
2 (1 - e 2 ) 1 / 2  W n a 2 ( - e 2 ) 1 / 2 3 N

dw -cot I R (1 - e 2 ) 1/ 2  R

d t n a2 (1 - e2)1/ 2  n a2 e 3 e

dN csc I R (2)
d t na 2 ( 1 - e 2 ) 1 / 2 3 I

dM (1 - e 2 ) aR 2 _R
dt na2 e e na Dana e

where n = (A /a 3 )i/2 ; n being the satellite's mean.motion and the earth's

gaussian gravity constant. R is the disturbing (non central) potential which, for

the earth's gravitational field (fixed part as distinguished from time varyinig),

has been expressed by Kaula [Kaula, 1966] in terms of the above Kepler ele-

ments as:

R = T a J F (I) Gq (e) Stpq (3)
e -2 m-O pp q=-m

where

lt-m evenCos

Smpq = (- 2p) w + (- 2 p + q) M+ m(N- e - m),'

sin t-m odd

and ae is the earth's equatorial radius, Oe is the Greenwich sidereal time, and

Ftmp (I) and Gtpq (e) are polynomials depending on inclination and eccentricity
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alone, respectively. The Jtm and X are the amplitudes and phase angles of the

spherical harmonics of the potential, related to the ordinary C&S coefficients

actually estimated in ROAD by

Jt = + (Ctm + S m 1/2

m m = Tan 1 (Sm/C fm).

The standard form of Re in terms of spherical harmonics is:

Re al ( p(sin )(C m cos mX + Sm sin mX), (4)

where r, and k are the satellite's distance from the center of mass of

the earth, geocentric latitude and longitude; and the P are the associated

Legendre polynomials.

The efficient functioning of the ROAD program depends upon the removal of

all short periodic effects from the equations of motion. For the geopotential,

this is accomplished by integrating only those terms (4, m , p, q ) for which the

argument of SCmpq is slowly varying. These long period terms fall into two

classes:

For zonal harmonics (m = 0); { - 2p + q = 0, and for longitude dependent

(resonant) harmonics (m / 0), ' - 2p + q = m/s are the indicial equations which

must be satisfied. For the resonant case, s here is a rational number close to the

actual mean motion (n) of the satellite in revolutions per day. The so called beat
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period of the resonant orbit (with respect to the s commensurability) is the

period it takes for the dominant argument of S to go through 3600 when { - 2p +

q = m/s. For near circular orbits this is generally the term for which q = 0.

This scheme is equivalent to integrating mean, or orbit averaged Kepler

elements and results in the proper interaction of all long-periodic effects with

each other. However, interactions of short-periodic terms (t - 2p + q # m/s, for

m / 0 and ' - 2p + q # 0, for m = 0) with each other and with long-periodic

terms are lost. But the only case where this neglect is significant are the long

periodic effects caused by the mutual interaction of the short periodic effects

due to the earth's oblateness (J 2, 0). When only long period terms are included,

the ROAD integrator adds the following element rates derived from the second

order oblateness potential due to Brouwer [Brouwer, 1959L.

da
dt

dt G sin2I 2 sin 2w)Ln o  3 L LG

( 16H2  15 H
4

SG2  

2 G2 ! 4(HGl (2 sin 2 w) L n -y2 3(5L7

16 H 215 H 4
1-+
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dw 2 75 L6 9 L' 105 L,8 -189 L6  18L 7

d t 0 2 3 2 G 4 G 7  32 G 8  16 G6  G 7

135 LS H2 135 L 6 135 L 7  1155 L8  H1
+ 1 -- + -+ -- +"

16 G8 G2 32 G6  4 G 7  32 G8 G4

376 k2 Ls L' /32 H 60 H ' 1
+ fl -- -

16 L'o \G 5  G . G 3  G s

( 16 H2 15 H4 -5 L 6  7 L8 c1\1
+ (1 - _-+ + cos 2 w

G2  G6  L

dN n '2 F(27 L6 9 L 7 15 L8 H (- 15L6 27L 7

dt 0 2  8 G6 2 G 7  8 G G 8G 6  2G 7

105L8 H 3/ 6kF L s L] -32H2 60H4+ . + H- -L +

8G / G3  16 L l'0o GLG G 2  G 4

-() cos 2 w

dM 2 75 L5 3 L6 451 / 135 L5  9 L6  45L 7

Sno+ + +

dt 32 G s 2 G6 32G 7  16G 5  G 6  16G7

H 751s 27 L 6  315L H
(7 L + +- + -

G2 32Gs 2G 6  32G 7  G 4

3 46 k2 16 H2 15H4 ,5L s 3 L3+ 6k F/16H+- +5~( L 3 7 ]cos2w, (5)
+ .6LZ (5 L

16L" G2 4 G G c

where the Delaunay variables are: L ( a) 1/ 2 , G = L (1 - e 2 )1/ 2 and

H = G cosI;andn o =2/L3 2 2 k2/L 4, k2 J2 (ae) 2 /2, and J2 2,0

8



Third IBody Gravity Effects (Direct)-

For the 3rd body perturbations, an entirely analogous development has been

made in Kaula 1962, and is used in ROAD. In this case, the perturbations, can be

sorted out according to frequency in much the same manner as the geopotential

perturbations. The long periodic terms of the 3rd body disturbing function are

the only ones presently coded in ROAD and have.the form -

= f (a, e, I, a*, e*, 1*) cos [(n- 2 h) w* - (n- 2 p) w + (n - 2 h + j) M'*

+ m (N -N*)],

where n here is the degree of the third body potential (2 n 4, as coded, and

where starred quantities refer to orbit elements of the disturbing body. Analogous

to the geopotential case; 0 5 h n, 0 p n and 0 m-n. Since f is proportional

to (e*) I, only - 4 j 4 is coded and can be limited further on option. A

further option is to ignore the less than monthly lunar terms where n - 2h + j 0.

Drag Perturbations

The method of computation of the long periodic and secular variations of

the elements due to atmospheric drag has undergone extensive development in

ROAD. Originally, analytic expressions similar to those given in King-Hele,

1964 were used, but when these expressions were modified to include non-

linearity of scale height and time dependence, the complexity became very great,

and separate developments for low and high eccentricities were required
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[Wexler and Gedeon, 1967]. Starting in 1971 this method was abandoned in favor

of a simple, purely numerical scheme (B. Chovitz, personal communication)

originally including only the effects on a and e.

The integrals that give the average time rates-of-change of the elements due

to drag are evaluated numerically by a 9-point Gauss quadrature integration. At

each integration point it is necessary only to compute the altitude of the satellite,

and evaluate the density of the atmosphere from any atmosphere model. The

ROAD program currently uses either the Jacchia 1968 or 1971 atmosphere

models [Diamante and Der, 1972].

The element rates are computed using the Gaussian form of the equations

of motion, which is expressed in terms of radial (F ), transverse (Ft ), and

normal forces (F ). The drag force is the usual simple model:

1 A
F = I C Apy

d2 CDmPV V

where

CD is the satellite drag coefficient

A is the projected cross-sectional area of the satellite normal to V
r

m is the mass of the satellite

p is the density of the atmosphere at the satellite position, and

Vr is the velocity vector of the satellite relative to the atmosphere.

The most significant problem in computing the correct drag is the

calculation of an accurate spheroid height of the satellite. This is done on the
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osculating J 2 perturbed orbit over which the drag is averaged. The formula used

was developed in Kozai, 1959 and modified to use the mean semi-major axis

instead of his "geometric" semi-major axis. That is:

Ja 2 / 3 T

Sr J2 1 -3 sin2 I
2p \ 2

[1+ 1 (1-rw ) cos f + 2r
ea

+-2 asin 2 I cos.2 (w + f)
4p

9 e sin f sin 2w
4 1 - e2

where p = a(1 - e 2) and f is the true anomaly.

Thus the satellite's radius vector has magnitude r + r where r is computed from

the two-body formula.

The spheroid height is then obtained by subtracting the spheroid radius of

the Earth at the latitude under consideration:

a, ( f!2 sin2 +_2+3f2 sn

REarth a e  - f 2 2 sin4

where in this particular formula,

f is the flattening of the Earth, and

€' is the satellite's geocentric latitude.
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The atmosphere is assumed to rotate with the Earth. The rotation rate of

the Earth resolves into a component (0, e cos I) normal to the orbit and a component

(6 e sin I) perpendicular to the angular momentum vector, h, of the satellite, which

is perpendicular to the vector, N, pointing toward the ascending node.

The satellite's velocity vector is given by

7r = (i, r f, 0)

in radial, transverse (or circumferential), and normal components, where F is

the satellite's position vector.

The relative velocity vector is then

Vr = [i, rf- r cos I, 0 e r sin I cos (w + f)]

From the vis viva or energy integral,

r - r= j2 + r 2 2 2
r a

Also, the angular momentum h is given by

h = r 2  /a e2).

Hence:

r2 2 2 2h o
r a, r e

+ e r 2 [cos 2 I + sin2 I cos 2 (w + f)].
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This last formula is used to compute the magnitude of the relative veloeity vector.

The Gaussian form of the variation equations for the perturbations of thde

Kepler elements are:

da 2 a 2

- [F e sin f + F t (1 + e cosf)]dt h

de [Fr sin f + Ft  cos f + cos + e
d t / r 1 + e cos f,

dI 1
T-TrF cos (w+ f)

dt h

dN_ 1 rF
Ssin (w + f)

dt h sin I

dw b d
dw= F cos f + F 1 + sin f -d- cos I
dt e4 r p dt

dM s (1 -e2)/ 2 dw dN 1/ 2  2 rF (I -e2) 1/ 2

dt ha d dt h

For the drag case-being considered:

Fr = -F d

F =- Fd (r - r-:co S I)

F=-Fd (e r sin Icos (w + f)
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Using the usual two body formulae for relating Kepler variables, the element

rates are simplified to:

da 1a2  + e + 2  e os f -Pe cos I)--- 2 a2 F d  + co

d t dp h

de [2 r2 c o s I  '

-= -Fd[2 e + 2 cos f - (ecos2 f + 2 cos f + e
T t dh

dI Fd
d th [r2e S in (I) cos 2 (w + f)

dN _ - Fd
dN -Fd r 2 ' sin (w+ f) cos (w+ f)

dt h e

d w -Fd r2 Co sd

[2- (2 + e cos f) sin f -- dNcosI
d t e h d dt

ciM dw dN 2 eFda-= (1 - e2) 1/ 2  _co_ d w dN Cos I + sin f •
dt Lha dt dt p J

These equations are now averaged over one revolution in True Anomaly to ob-

tain the mean element rates which are added (on option) to the other rates used

in the ROAD integrator. This averaging is done numerically by a 9 point Gauss

quadrature method with the middle point placed at perigee to insure an accurate

computation of the maximum drag.
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Radiation Pressure Effects

The scheme used to calculate the long-periodic radiation pressure effects

is that given in Kaula, 1962. He notes that for a satellite entirely in sunlight, a

quasi-potential (for the orbit averaged disturbance) can be developed for radia-

tion pressure. Kaula's quasi-potential is used as is in the Lagrange Planetary

equations for sunlight conditions. However, if a shadow is present, an integra-

tion of the derivatives of the full potential from exit point to entry point is

made to obtain the orbit-averaged disturbance. The values of the eccentric

anomaly at these points are obtained by solution of the quartic equation given in

Kaula's paper. The satellite is assumed to be spherical, and the earth's shadow

cylindrical. The radiation force fr (actually, the acceleration) is given as (I/C)

(A/M) C, where I is the Solar Flux in space (1.37 x 106 erg/cm2-sec) and C is

the velocity of light. The original subroutine for these effects in ROAD was

supplied by Bernard Chovitz [B. Chovitz, Personnal Communication, 19703.

For a shadowless orbit, the long-term (orbit averaged) potential is as given

in Kaula, 1962:

= - fr (3 a e/2) [cos 2 (1/2) sin 2 (e/2) cos (w + N + ke)

+ cos 2 (I/2) cos 2 (e/2) cos (w + N - NXe®)

+ sin 2 (1/2) cos 2 (E/2) cos (w - N + ke)

- 1/2 sin I sin e cos (w + ke®) + 1/2 sin I sin E cos (w - Ni),

where e and Xi are the inclination of the ecliptic ( 23.450) and the sun's true

longitude.
15



The derivatives of the quasi-potential with respect to the orbit elements are

then used in the standard form of the Lagrange equations, (2), to form the

element rates from the radiation pressure for the shadowless orbit.

For the shadowed orbit, the long term, orbit averaged, derivatives are given

in terms of the exit and entry eccentric anomalies, E0 and E1 , as:

Rfr- 1 + e 2 ) snE --s - E-esin 2E- (1 + e 2 ) sinE o +-eE
a 2 4 2

+-sin 2E 0  R + /- e 2 cos2E -/1 -e 2 cos.E 14. 1. ) e

S-/1T- e cos 2E o + 1- e2 cos E0E o  R 1 2

R_ frFD 3 e E L i 2 + 1

= e R E E + e sin E,+ s in 2 E o +Eo - e sinEo -- sin 2 E

+ R 12 - e ecos E1 --I cos 2 E1 - e cos Eo +-cos 2 E

3El

3 e . ' E

- eE+ (1 +e 2) sinE--sin 2E
2 4

R f BR ... e

SR f 1, 0, 0) - q /1 _ e2 cos E +-1 - e2 cos 2 E
3 (N, I, w) 2 ( , (N, I, w) 4

0
E

0

-aR fa
-R [RI, (cos E1 - cos Eo) + R12 V (sin E1 - sin E),

M 2r16
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where R is a rotation matrix relating the position of the satellite in an orbital
-sq

plane coordinate system to its position with respect to a coordinate system point-

ing at the sun. Rsq is defined as the successive rotations:

R3  Z) 1  1 3  ),

where,

1 0 0

S (x) =0 cos x sinx and

0 sin x cos x

cos x sinx 0

R (x) sinx cosx

S0 1

R 11 and R 12 are elements of R sq

Precession and Nutation

The effects of precession and nutation of the earth's polar axis are ac-

counted for in ROAD by maintaining the integration in an inertial system with

respect to the equinox and true equator at epoch (TE). All the forces are initially

calculated in a system referred to the equinox and true equator of date (TD),

corresponding to the observed data. The forces (actually the Kepler rates) are

then rotated (by a precession-nutation matrix) to refer to the TE system where

the integration proceeds. The integrated state is rotated back to the TD system

17



at the end of each integration step for calculation of new rates. The chain of

rotations actually used to obtain the rates in the TE system is:

d STE - STE TE TD STD

d t - T - D 3r - 'TD d t

where 3 is the cartesian position-velocity vector corresponding to the Kepler

elements s in the indicated coordinate system. The matrix ix/ls is documented

on page 68 of Kaula's book [Kaula, 19661 The precession-nutation matrix

XTE PXTD is described in volume I of the GEODYN Documentation, (Sept. 30,

1972, Goddard Space Flight Center NAS-5-11735 Mod. 65, PCN 550W-72416) and

provides for Simon Newcomb's description of the precession and Edgar Woolard's

nutation.

Solar and Lunar Tides

The ROAD program treats the tidal perturbations in a manner analogous to

all other gravitational perturbations. The potential is expanded in terms of

Kepler elements, and the long periodic terms only are selected for differentiation

in the computation of the Kepler element rates from the standard form of the

Lagrange equations (2). The form of the potential is due to Kaula [Kaula, 19691,

and includes provision for latitude dependent tidal amplitudes (Love numbers)

and phase lags (of the potential bulge from the 3rd body-earth line).

The potential that is used in ROAD is equation (22) in Kaula, 1969:

18



k+ I

T = Fkmj (I) Gkj (2i -k) (e) Qthkm
mpqhkj

Cos k even sin k even-

k th+ (k E )h

-1), sin 1.( 1), CosL 1k odd k odd

[Vkmj ( 2 j-k) tmpq '

The subscripted k's are the love number's and the E's are the phase lags of the

tidal potential. In the above potential, no short period effects (in the satellite's

mean anomaly) are considered. Both K2mpq and Q 2mpq terms (the dominant ones

for a distant 3rd body; t = 2) are defined in tables II and I of Kaula's 1969 paper.

The F and G functions are the usual ones for satellite orbits defined in Kaula's

book [Kaula, 1966]. The latitude dependence of the love number k is defined by

k.= k h Pho (sin q),

h

and the phase lag E mpq by

Em = En (tm p q) Po (Sin <)
n

where the P's are the ordinary Legendre polynomials. The quantity (k E)h is

the sum

19



k 6n Qknsm"
n

The longitude arguments are:

Vkmj( 2j k) -V*mp q = [(k- 2 j) w+mN]- [ -2p) w* + (t - 2p + q)M* +mN*1,

where the starred elements belong to the 3rd body.

Element Secular Rates and Accelerations

The ROAD program also can include the effect of up to 5 arbitrary element

rates and accelerations (derivatives) of the six initial Kepler elements [E] of

each arc. Thus, the elements E at time t are expanded in a Taylor series in the

arbitrary derivatives E] at the epoch time to:

5s (t - to)n R [n]E (t) = • (to)

n= 0

In addition, the program can propagate a constant bias in each arc of semi-major

axis observations, to satisfy the equation:

a (OBSERVED) = a (CALCULATED) + a (BIAS).

This bias is often needed to account for the different definitions of the mean

semi-major axis between ROAD and the observations used.
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ORBIT AND GEODETIC PARAMETER ESTIMATION

The logic of ROAD in its estimation (or differential correction) mode follows

the (now universally used) scheme of partitioned normals [Kaula, 1966], Param-

eters are separated into "arc" parameters; that is, parameters unique to each

orbital arc, anid common parameters, or parameters common to all orbit arcs.

In a multi-arc solution with common parameters, the comimon parameter matrix

is first solved and then the arc matrices are successively solved by back-

substitution.

Of course parameter and orbit estimation requires partial derivatives. In

ROAD these are obtained by numerically integrating variational equations. The

equations of motion have the form

ds
T - 6 f (a, e, i, N, w, M, t)
dt

where s is an array Kepler elements, and E is a parameter to be estimated. Thus

formation of the variational equations is elementary. The rigorous variational

equation for a parameter a that is numerically integrated is:

_ F/ds1 d ( s
(a s f (a, e, i, N, w, M, t)

- f si
+e

2 1
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However, because of the small interaction of effects, the second term on the right

hand side is ignored for radiation pressure, Earth tides, and even drag parameter

estimation.

In parameter estimation the ROAD program utilizes a Baysian least

squares scheme; i.e., a-priori information is required on all adjusted param-

eters. However the program accepts only a-priori standard deviations. No

covariances are allowed (they are assumed to be zero). In ROAD, a-priori

information is used to control the conditioning of a problem and also the amount

by which parameters are allowed to adjust. But because the full covariances

information is not given, this adjustment control is not always rigorous.

RESULTS AND CALIBRATIONS

The ROAD program has undergone extensive calibration on long arcs of

simulated osculating element data in the course of its development [i.e., Wagner,

Putney and Fisher, 1970 and Guion, Lynn and Lynn, 1970 ]. While these

calibration results have generally been successful they point up the need

for accurate osculating to mean element conversion when ROAD operates in its

rapid mean element mode. Since the most accurate observed elements on real

orbits are osculating (i.e.; derived by numerical integration from complete force

models), the availability of a good converter is not just academic. The results

presented here (on both real and simulated data) were obtained with the use of a

combined analytic-numerical converter discussed in Douglas, Marsh and Mullins,

22



1972. Previous ROAD preprocessing of osculating elements [Wagner, 19721

removed short period effects using the analytic theory of Brouwer, 1959. The

new-method first removes analytically all short period effects due to the geo-

potential through (4, 4) [Kaula, 1966]. The remaining effects are averaged

numerically over an orbit revolution with respect to a secularly precessing

ellipse.

The satellites used for the real data calibration were GEOS-1, GEOS-2,

and PEOLE. GEOS 1 has a near critical inclination, and so experiences rather

large perturbations from odd zonal harmonics. The orbit is also slightly eccen-

tric (e = 0.07) so that radiation pressure perturbations are important. Drag,

although very small, is detectible.

GEOS-2 has a more nearly circular orbit than GEOS-1, and is thus rela-

tively much less affected by radiation pressure. However, the high (1060) in-

clination of the orbit causes a slow node rate (0.6/day) and resulting large tidal

perturbations exceeding 10 arc seconds in the inclination and 30 arc seconds in

the node.

PEOLE is a low inclination (150), low perigee satellite with rapid node and

perigee rates. Drag is very high, the semi-major axis decaying about 30 m per

day. All of these satellites are significantly perturbed by the sun, moon, and

the effects of precession and nutation.

The orbit of PEOPLE is a good test of the ability of ROAD to represent

properly the effects of atmospheric drag. Figure 1 shows the observed and
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computed semi-major axes of PEOLE obtained from a ROAD orbit determination.

The time covered is the year 1971. The mean elements were determined from 4

day orbital arcs of minitrack and laser data as part of the International Satellite

Geodesy Experiment (ISAGEX) [Marsh, Douglas and Klosko, 1971]. Note the

close agreement of observed and computed elements using the Jacchia 1968

model atmosphere. Subtle variations are visible and are properly modeled.*

The overall error for the year is only about 5%, and appears to be long-periodic.

It is suspected that the Jacchia atmosphere of 1968 may have an error in the

semi-annual variation of density, so a small unmodeled variation is not

surprising (see also Wagner, 1972).

Figure 2 shows the mean eccentricity of PEOLE, also obtained from the

ISAGEX data. The periodic variation due to the odd zonal harmonics is clearly

visible, as is the secular decrease due to drag. Figure 3 shows the residual

eccentricity with drag modeled as above and zonal harmonics from the SAO

1969 Standard Earth [Gaposchkin and Lambeck, 1970]. Note that drag effects

are removed essentially perfectly (the residuals have no clear secular trends)

but a residual odd zonal harmonic effect remains. Since the SAO 1969 zonal

harmonics included no low inclination satellites, such a residual effect is to be

anticipated. To verify that this is not due to error in ROAD, the eccentricity of

PEOLE was obtained from a complete "Cowell"-type, numerical integration

of the geopotential to (4, 4). Mean elements were then prepared from

*Where observed and computed points are coincident, only the observed is printed.
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this trajectory by the method in Douglas, Marsh, and Mullins (1972). Figure 4

shows the variation in eccentricity produced by C3,0 (predominantly) and Figure 5

shows the ROAD-fit to this data using the same value of C . The residuals ap-
3,0

pear random and have an rms of only 0.1% of the amplitude of the eccentricity

variation shown in Figure 4.

GEOS-1 offers- a good opportunity to study the ROAD radiation pressure

model. Drag is small for GEOS-1 (but not negligible). Resonance produces a

small, significant effect, but with a period of less than a week. Because of the

substantial eccentricity of the orbit, radiation pressure causes the dominant

perturbation of the semi-major axis during orbit shadow periods. Fluctuations

of 5-15 meters over several months are typical. These can be studied in detail

because very accurate mean elements for GEOS-1 are available. The mean

elements obtained in Douglas, Marsh, and Mullins (1972) from 2 day orbital

arcs of optical data have a precision of 25 cm in the semi-major axis (see

figure 6).

The decay of semi-major axis of GEOS 1, due to drag, amounts to 5-10 m per

year and is most readily seen during a no-shadow period, such as July-August

1966. Because of these significant drag effects, it was found necessary to ac-

count for both drag and radiation pressure perturbations on GEOS-1.

The radiation pressure model in ROAD does not include the Earth Albedo

effect. Thus a small error in the modeling of radiation pressure is possible.

The period March 11 - May 15, 1966 on GEOS-1 has been studied intensively for
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determination of tidal parameters where, of course, accurate modeling of radia-

tion pressure is essential. During this period the semi-major axis is perturbed

in a non-linear fashion by radiation pressure by about 5-6 meters, and in a linear

way from drag by about 60 cm. Figure 7 shows the residuals obtained in the mean

semi-major axis for this period by ROAD when CD and CR are adjusted to the

values CD = 3.1, and CR = 1.52. The rms of the fit is less than 25.cm.

Another important test of ROAD concerns Earth tides. Figure 8 shows the

residuals in the inclination of GEOS 2 over a 600 day period with respect to mean

elements obtained from 2 day arcs of optical tracking data. Earth tides were not

modeled in obtaining these residuals. Note a long period unmodeled perturbation

of amplitude 5" in the inclination. Figure 9 shows the results with the Love

number k 2 = 0.30 modeled in ROAD. The residuals are almost random. This

value of k 2 also substantially explains a similar, substantial, solar tidal effect

(of the same long period) in the node of GEOS 2. This value of the Love number

is in reasonable agreement with values derived from other orbits which range

from 0.25 to 0.35. [Kaula, 1969].

SUMMARY

The ROAD program can efficiently analyze long arcs of mean elements for a

wide variety of geodetic effects. Since 1969, the program has been used extensively

to determine and evaluate both resonant and zonal geopotential harmonics from

a large number of orbits. It has also been used to investigate possible variations

in low order earth-gravity "constants" [Wagner, 1973].
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Currently, the program is also being used at Goddard Space Flight Center to

study the time varying geopotential due to sun and moon induced earth tides,

through their effects on a large number of well tracked satellite orbits

[Douglas and Marsh, 1973].
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Figure 1. The Semi-major Axes of PEOLE Obtained From a Road Orbit Determination.
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